Overcoming Virtualization Overheads for
Large-vCPU Virtual Machines

Ozgur Kilic, Spoorti Doddamani, Aprameya Bhat, Hardik Bagdi, Kartik Gopalan
Contact: {okilicl,sdoddam1,abhat3,hbagdil kartik } @binghamton.edu

Abstract—Virtual Machines (VM) frequently run parallel ap-
plications in cloud environments, and high performance com-
puting platforms. It is well known that configuring a VM with
too many virtual processors (vCPUs) worsens application perfor-
mance due to scheduling cross-talk between the hypervisor and
the guest OS. Specifically, when the number of vCPUs assigned to
a VM exceeds available physical CPUs then parallel applications
in the VM experience worse performance, even when number of
application threads remains fixed. In this paper, we first track the
root cause of this performance loss to inefficient hypervisor-level
emulation of inter-vCPU synchronization events. We then present
three techniques to minimize hypervisor-induced overheads on
parallel workloads in large-VCPU VMs. The first technique pins
application threads to dedicated vCPUs to eliminate inter-vCPU
thread migrations, reducing the overhead of emulating inter-
processor interrupts (IPIs). The second technique para-virtualizes
inter-vCPU TLB flush operations. The third technique enables
faster reactivation of idle vCPUs by prioritizing the delivery
of rescheduling IPIs. Unlike existing solutions which rely on
heavyweight and slow vCPU hotplug mechanisms, our techniques
are lightweight and provide more flexibility in migrating large-
vCPU VMs. Using several parallel benchmarks, we demonstrate
the effectiveness of our prototype implementation in the Linux
KVM/QEMU virtualization platform. Specifically, we demon-
strate that with our techniques, parallel applications can maintain
their performance even when 255 VCPUs are assigned to a VM
running on only 6 physical cores.

Index Terms—Virtualization, Virtual Machines, Virtual CPUs

I. INTRODUCTION

Hypervisors [1], [2] virtualize the hardware resources for
virtual machines (VMs), including number of virtual pro-
cessors (vCPUs), amount of memory, storage, and network
bandwidth. Currently, elasticity of VMs is managed by an
orchestration engine, which decides how much hardware to
allocate to a VM, on which physical machine a VM runs, and
when it is migrated. These allocations are currently managed
at coarse granularity when creating or migrating VMs.

A VM could theoretically provide “unlimited” resources
to its applications and the underlying hardware resources
can be transparently marshaled at finer-granularity to meet
the application’s needs. A requirement for such an elastic
VM is that the abstraction of unlimited resources should not
negatively impact application performance. In our findings,
this is not the case with current virtualization techniques which
scale poorly as the amount of virtualized resources assigned
to a VM increase.

It is widely known that virtualization introduces overheads
that negatively impacts application performance [3], [4], [5],

[6]. Although architectural support for virtualization [7], [8],
[9] helps to some extent, it does not eliminate all virtualization
overheads. For processor virtualization, which is our focus, the
hypervisor introduces overheads in emulating inter-processor
interrupts (IPIs) [10], TLB invalidation, and transitions to/from
idle modes, among others. Semantic gap between the guest
OS and hypervisor also causes double scheduling, where
the guest and host-level CPU schedulers make independent,
but inefficient, scheduling decisions. Many prior efforts [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], have
investigated these overheads. However, the impact of these
overheads on VMs having large number of vCPUs has not
been systematically addressed.

VM orchestration is another aspect of cloud platforms to
perform flexible placement and movement of VMSs across
machines in a data center. A VM may be migrated to a
machine with fewer resources for consolidation when the VM
does not fully utilize all assigned resources. Conversely, to
handle an increase in workload, a VM may be migrated to
a machine with more resources. Currently, cloud providers
and users need to guess the ideal number of vCPUs, memory
capacity, and I/O capacity with which to configure a VM rel-
ative to the corresponding hardware resources in the physical
machine. Focusing on processors, when a VM migrates to
another machine with different number of physical processors
(pCPUs), the cloud provider may need to either reconfigure
and reboot the migrated VM with a new vCPU count, or use
heavyweight CPU hotplug/unplug [22] mechanisms. Despite
improvements [23], [24], both rebooting and hotplugging lead
to significant overheads and disruption for applications.

This paper focuses on the performance of parallel workloads
in a VM having large number of vCPUs. We observe that when
more vCPUs are assigned to a VM than the available physical
CPUs (pCPUs), the performance of parallel applications
running in the VM degrades, even for a constant workload. We
trace the root causes of this performance loss to the emulation
of inter-vCPU synchronization events and CPU scheduling
mismatch between the hypervisor and the guest. We present
a solution that decouples a parallel application’s performance
in a VM from the number of vCPUs assigned to the VM and
provides a more predictable application performance.

The key idea is to configure a VM with a large number of
vCPUs, ideally one dedicated vCPU per application thread'.

'In practice, we configure maximum vCPUs allowed by the underlying hy-
pervisor implementation, which is currently 255 vCPUs in KVM/QEMU [25].

Increasing the number of vCPUs also increases the overhead
of emulating inter-vCPU synchronization events in the hy-
pervisor, specifically Inter-processor Interrupts (IPIs) between
vCPUs. We develop three techniques to reduce hypervisor-
level scheduling and IPI emulation overheads for large-vCPU
VMs.

1) First, we obviate the need for most vCPU scheduling
in the guest OS by assigning each application thread to
a dedicated vCPU. Dedicating a vCPU to each thread
eliminates the IPIs needed to synchronize inter-vCPU
thread migration, and the corresponding emulation and
mode switching (VM Exit/Entry) costs.

2) Second, we implement a paravirtualized TLB flushing
mechanism for vCPUs that is less expensive than inter-
cepting and emulating IPIs for inter-VCPU TLB flush
operations.

3) Finally, we speed up the mechanism for reactivating
idle vCPU threads from blocked state in the hypervisor
by prioritizing the delivery of rescheduling IPIs to idle
vCPUs.

These techniques together enable a VM configured with
maximum allowable vCPUs to maintain the best application
performance possible on available pCPUs. The orchestration
engine also regains the flexibility to migrate VMs to a
machine that has more or fewer pCPUs. More pCPUs in
the new machine translates to better performance, since a
parallel application can now exploit increased parallelism by
virtue of the VM having more vCPUs that can execute in
parallel. Conversely, if the new machine has fewer pCPUs,
our approach enables the VM to scale down its application
performance without incurring the hypervisor-level emulation
costs discussed earlier. In contrast, earlier approaches to ad-
dress double scheduling [19], [20] are overly conservative
since a VM cannot have more vCPUs than pCPUs in the
machine. This prevents a large-vCPU VM from being migrated
to a machine with fewer pCPUs, or a small-vCPU VM from
exploiting increased parallelism when migrated to a machine
with more pCPUs.

The scope of this paper is focused on a single large-
VCPU VM’s performance and we defer the consideration of
multiple co-resident VMs to future work. The rest of the
paper is organized as follows. Section II discusses IPI and
double scheduling overheads in more detail. Sections III and
IV present the design and implementation of our techniques.
Section V presents the evaluation of our prototype using
Parsec benchmarks. Section VI discusses related work and
Section VII concludes the paper.

II. PROCESSOR VIRTUALIZATION OVERHEADS

In this section we further discuss overheads in processor
virtualization due to IPIs and double scheduling.

Inter-processor interrupts (IPIs) [10] are used by processor
hardware to communicate with each other. When a CPU wants
another CPU to perform certain action, it interrupts the current
running task on that CPU by sending an IPI to preempt the
current task from a CPU and assign a specific target task. The

CPU which receives the IPI immediately pauses its job and
handles the IPI. IPI processing between pCPUs in hardware
does not take significant time. However, for a VM, IPI between
vCPUs must be emulated in software in the hypervisor, which
is slower. When an IPI is sent to a vVCPU in a VM, it
triggers a VM Exit, and the interrupt is then forwarded to
the destination vCPU by the hypervisor. Suppose, the receiver
vCPU is not scheduled on a pCPU, then the hypervisor needs
to first schedule it on a pCPU in order to inject the pending
IPI which gets processed in guest mode. Some IPIs, such
as function call IPIs, require a response from each receiver
vCPU, which increases the IPI processing overhead due to
delay in waiting for all responses. A rescheduling IPI forces
the receiver to invoke the CPU scheduler to schedule a new
task. This causes significant overhead on the system as the
scheduling of a task may get delayed until the IPI is delivered
to destination vCPU and processed. There are several studies
in the literature to optimize IPI delivery [18], [26], [27] but
none of them addresses overheads arising from large number
of vCPUs and parallel workloads.

Another overhead that arises with virtualization is double
scheduling. Guest OS that runs in the VM is unaware of the
virtualization environment provided by the hypervisor layer,
which runs in the host OS. When guest OS schedules processes
according to its scheduling policy, it tries to distribute the
entire workload of all the processes among all of its vCPUs.
The host OS performs another level of scheduling among host-
level processes and threads. The hypervisor in the host OS
creates and manages vCPUs for guests. At the host-level, a
vCPU is essentially a thread that executes in the guest mode
and is scheduled on a pCPU just like any other host-level
processes. A vCPU thread transitions between execution states
running, ready or blocked. The CPU scheduler in the host OS
makes scheduling decisions considering all vCPU threads from
all the VMs that are being hosted. A vCPU in guest mode
may be idle, or executing a guest-level thread, or executing
code in the guest kernel. Due to semantic gap [28] between
guest and hypervisor, the host-level scheduler is unaware
of the guest scheduler. A scheduling decision in the guest
OS can be overridden by another scheduling decision in the
host OS, leading to sub-optimal performance in the guest.
For instance, a guest vCPU may steal work, i.e. migrate a
ready thread, from another vCPU for better CPU utilization.
However, the hypervisor may preempt the work stealing vCPU
to schedule another vCPU, defeating the purpose of thread
migration. Hypervisor may also preempt a running vCPU
which is holding a spin lock [29] causing a problem called
lock holder preemption [11], in which other vCPUs contending
the spin lock are delayed.

Both inter-VCPU synchronization and double scheduling
overheads grow as the number of vCPUs assigned to a VM
is increased. In the next section, we present our solutions to
address these overheads followed by their evaluation.

User
Space
TLB Flush Pinning Kernel GUEST
Controller Unit Space
Hypercall
""""""""""""""" T T T | e
\ 4
TLB Flush Handler
I
RES IPI Delivery controller HOST
KVM ‘
Invalidate Kernel
EPT Space
\ 4 A

pCPUs

Fig. 1. Overview of techniques used to reduce hypervisor-level emulation
overheads for large vCPU virtual machine.

pCPUg || ...

II1. DESIGN

Support for large-vCPU VMs presents two major chal-
lenges. First, hypervisor-induced overheads increase as the
number of vCPUs increase. Hence the first design requirement
is to maintain application performance when the number of
vCPUs exceeds the number of pCPUs. The second challenge
is to support unmodified applications while minimizing any
changes to the guest OS. Figure 1 illustrates our design,
which has three main components: (a) assigning a dedicated
vCPU to every application thread to eliminate inter-vCPU
thread migration, (b) para-virtualizing TLB-flush operations
by the guest to reduce traditional emulation overhead, and (c)
speeding up the reactivation of idle vCPUs for newly woken
threads by prioritizing the delivery of rescheduling IPIs. These
techniques are described in detail below.

A. Allocating a Dedicated vCPU per Thread

Traditional operating systems allow users to create (practi-
cally) unlimited number of threads. The native CPU scheduler
is responsible for dynamically multiplexing thread execution
on pCPUs at runtime. When applications run in a VM,
the host OS scheduler no longer has the ability to directly
schedule application threads. Instead, it schedules a small
number of vCPUs belonging to the VM, and the guest OS
schedules threads on vCPUs. While this arrangement allows
division of labor between the guest and the host, it also brings
virtualization overheads due to double scheduling, as discussed
earlier.

Imagine if, instead of the guest OS scheduling threads to
intermediate vCPUs, the host OS could directly schedule guest
threads on pCPUs. This would eliminate double-scheduling
problems discussed earlier.

To eliminate two levels of vCPU and pCPU scheduling,
we propose to dedicate one vCPU per guest thread®. Thus the
guest OS would have no need to perform any CPU scheduling,

2Currently KVM supports 255 maximum number of vCPUs for a guest [25].

since now the thread-to-vCPU mapping is fixed for the lifetime
of the thread. On the other hand, the host OS sees each
guest thread as a distinct schedulable entity in the form of
the corresponding vCPUs. Unfortunately, a large number of
vCPUs required for this solution end up increasing hypervisor-
induced overheads, as discussed before. In the following two
subsections, we discuss ways to limit this overhead.

B. Para-virtualizing Inter-vCPU TLB Flush Requests

TLB flush operation is used by the OS to clear any cached
page table mappings in the TLB of one or more CPU cores.
Generally, any changes to virtual address mapping of a process
may invoke TLB flush to ensure that stale mappings are
evicted from all CPU cores. One CPU core may request other
cores to flush their TLBs by sending a synchronous function
call TPI that invokes the TLB flush operation on the remote
cores; we call this IPI as TLB flush IPI for simplicity. On a
native OS, the IPI delivery is handled completely in the CPU
execution hardware.

However, for a VM, the TLB flush IPI from one vCPU to
other vCPUs must be emulated by the hypervisor which alone
knows the vCPU to pCPU mapping that is needed for IPI
delivery. TLB flush IPI also requires the IPI sender to wait
until all receivers acknowledge the flush operation. If one of
the IPI receiving vCPUs is delayed in being scheduled by the
host OS, the sender vCPU would have to wait longer until the
TLB flush IPI is acknowledged.

Our second technique attempts to reduce the overhead of
emulating the delivery of TLB flush IPI between vCPUs.
Instead of delivering a TLB flush IPI to every vCPU, we
use KVM’s hypercall mechanism — an explicit service request
from the guest OS to the hypervisor — to perform TLB flush
operation directly on all pCPUs. For a large-vCPU VM, this
improvement eliminates the overhead of having to inject a
virtual IPI into each of the 255 vCPUs.

C. Accelerating Idle vCPU Reactivation

When a pCPU has no ready threads in its scheduling queue,
it enters idle mode which places the CPU in low-power state.
Rescheduling IPIs are used in Linux to wake up a CPU from
idle mode to schedule a new ready thread.

In a VM, an idle vCPU cannot place the pCPU in low-
power mode because other vCPUs may need to execute on
the pCPU. Hence an idle vCPU exits guest mode (via VM
Exit) back to the hypervisor, which emulates idling by moving
the corresponding vCPU thread to blocked state. When a
guest thread becomes ready to execute on the idle vCPU, a
rescheduling IPI is generated from a peer vCPU. The time
to deliver this rescheduling IPI to the blocked vCPU and re-
enter guest mode increases when there are more vCPUs. The
current Linux CPU scheduler in the host OS does not prioritize
rescheduling the reactivated idle vCPU and may schedule other
vCPUs instead.

The hypervisor normally moves the blocked (idle) vCPU
thread to ready state and triggers the host-level Linux CPU
scheduler which executes its own default scheduling algorithm.

This normally works well when the pCPU runs only one vCPU
but not when pCPUs are over-subscribed. Since the Linux
CPU scheduler in host OS and the KVM hypervisor do not
coordinate, it delays the reactivation of a newly woken vCPU.
This scheduling delay defeats the main purpose of generating
a rescheduling IPI for the idle vCPU.

To reduce the latency of reactivating the idle vCPU, we
modify the hypervisor-level mechanism to block and wake up
an idle vCPU. Specifically, when moving the idle vCPU from
blocked to ready state, we temporarily boost the scheduling
priority of the idle vCPU thread so that the CPU scheduler
can schedule immediately and the rescheduling IPI can be
delivered in a timely fashion.

IV. IMPLEMENTATION

Our implementation uses KVM/QEMU virtualization plat-
form in the Linux operating system with Linux kernel version
4.12.9 and QEMU version 2.5.0. KVM is the hypervisor that
executes as a kernel module in the Linux kernel and QEMU
is a per-VM management process that runs in user-space of
the host OS. QEMU and KVM coordinate with each other
to carry out the initialization and runtime management of the
VM’s vCPU, memory, and virtual I/O devices.

Our implementation has three major components; a guest
kernel mechanism to pin each new application thread to a
dedicated vCPU, a para-virtualized TLB flush mechanism, and
a KVM hypervisor to accelerate the delivery of rescheduling
IPI to idle VMs. Below we describe the implementation details
of each of these components.

A. Dedicated Per-Thread vCPUs

The main idea is to pin each thread to a dedicated vCPU
and prevent the guest CPU scheduler from performing work
stealing, which means to migrate threads across vCPUs during
runtime to balance loads. With large-VCPU VMs, pinning
obviates the need for work stealing, since only one active
application thread runs on each vCPU, hence all vCPUs are
balanced by design. Absence of work stealing in the guest
implies that no rescheduling IPIs need be generated for inter-
vCPU load balancing. We also disable a kernel-level load
balancing mechanism [30], called sched_load_balance
to prevent Linux scheduler from migrating threads to equalize
loads across vCPUs.

That said, in Linux, some OS services create one kernel-
level thread per CPU. Hence the pinned application thread may
share its vCPU with threads meant for system level services.
In our experience these kernel threads run only for occasional
tasks and do not contend much with the pinned application
threads. Hence the guest CPU scheduler runs only when a new
thread is started and when switching between kernel services
and the application thread.

An application thread is pinned to its own vCPU at thread
creation time (in the fork system call). Ideally, we want
only one application thread per vCPU. Practically, the KVM
hypervisor supports a maximum of 255 vCPUs, due to an 8-
bit APIC ID field in the local APIC. Hence, if there are more

than 255 application threads at any instant, then some threads
may be pinned to the same vCPU. A more recent hardware
extension for APIC, called x2APIC [31], [26], supports a 32-
bit process ID field and can enable fully dedicating one vCPU
per application thread.

B. Para-virtualizing TLB Flush

Operating system uses TLB [2] to speed up memory transla-
tions. Whenever the memory mappings are updated in the TLB
of a CPU, corresponding mappings in the other CPUs need to
be invalidated to maintain consistency in translations. To flush
the TLB mappings on other CPUs, the CPU modifying any
page table mappings notifies all affected CPUs by sending a
function-call IPI which triggers each receiver CPU to execute
a function that invalidates the affected mappings in the local
TLB. We call this IPI as TLB flush IPI. In Linux, the
CPU sending the TLB flush IPI must wait till it receives
acknowledgments from all receiver CPUs (via an in-memory
data structure) that they have invalidated the affected TLB
mappings. On bare metal, TLB flush IPIs are delivered within
the execution hardware and do not incur any noticeable delays
in the software.

However for a VM, the hypervisor cannot ensure that all
sender and receiver vCPUs are simultaneously scheduled on
pCPUs. Hence the KVM hypervisor needs to emulate IPI
delivery to each receiver vCPU that is not already running
at the time IPI is generated (meaning that the receiver vCPU
was either blocked or pre-empted). Such receiver vCPUs are
first woken up, if blocked for idling, and scheduled on a
pCPU by the host-level CPU scheduler. Then the hypervisor
injects the IPI notification in a vCPU-specific data structure
and transitions the vCPU to guest state (via VM Entry). At this
point the receiver vCPU can process the IPI, execute the TLB
flush operation, and acknowledge the sender vCPU. This entire
sequence must be repeated for each receiver vCPU affected by
the invalidation of TLB entries.

The more the number of vCPUs, the longer the sender
vCPU must wait for all acknowledgments to arrive. Hence,
large-vCPU VMs experience a significant performance loss
when running memory-intensive multi-threaded applications
that frequently invalidate their virtual memory mappings. For
instance, the Dedup benchmark in the Parsec benchmark
suite [32] frequently invokes the madvise () system call to
release address mappings that are no longer needed.

Our solution to this problem is to para-virtualize the TLB
flush invocation in the guest. We modified the KVM hyper-
visor and the guest kernel to replace the emulation of TLB
flush IPI with a more efficient hypercall-driven mechanism.
Specifically, whenever TLB entries need to be invalidated, the
sender vCPU invokes a hypercall requesting the hypervisor
to directly flush the TLB, instead of generating an IPI for
receiver VCPUs. The hypervisor then directly invalidates the
affected TLB mappings on all pCPUs using native IPI delivery
in the execution hardware, as opposed to the earlier described
method of injecting virtual IPIs for receiver vCPUs to process
in the guest mode. Since there are far fewer pCPUs than vC-

PUs, the sender vCPU only needs to wait until all the pCPUs
invalidate their TLB entries for that VM and acknowledge the
sender’s pCPU. This optimization significantly speeds up TLB
flush operation for large-vCPU VMs.

Guest Modifications: TLB flush mechanism in the guest
kernel creates a CPU map of all the CPUs whose TLB needs
to be invalidated. Sender vCPU first invalidates its TLB, then
using the CPU map it sends TLB flush IPI to all other vCPUs.
Our TLB patch intercepts this mechanism before it sends
the IPI, instead, it makes a hypercall to the host. In this
way, hypervisor handles the TLB flush for the respective VM
without the need for TLB flush IPIs.

Host Modifications: On the host side, we add a hypercall
handler for processing TLB flush. After KVM receives the
hypercall it calls our handler with the information about the
caller vCPU. Our handler uses a KVM-provided function to
flush TLB entries for all vCPUs of the VM.

C. Fast Reactivation of Idle vCPUs

To deliver a rescheduling IPI to an idle receiver vCPU,
the sender vCPU writes required information to an MSR
register [33] which causes a VMEXit on the sender vCPU.
Because of the VMEXit, sender vCPU exits from the guest
mode and KVM hypervisor takes control to handle the VM
Exit. The exit handler first posts the IPI to the receiver vCPU
and marks the vCPU thread ready for scheduling by the host
CPU scheduler. Additionally, to reduce the time spent waiting
in ready queue, the exit handler temporarily boosts (increases)
the scheduling priority of the receiver vCPU. Specifically,
instead of only making the vCPU ready to run, the receiver
vCPU thread is also marked as the immediate next task to be
scheduled on its pCPU. This ensures the receiver vCPU will
be reactivated from its idle state without any scheduling delays
and can immediately run the pinned application thread.

V. EVALUATION

In this section, we demonstrate that our techniques over-
come key virtualization overheads when running parallel appli-
cations within large-VCPU VMs. We evaluate the performance
of various parallel applications from the PARSEC benchmark
suite [32] and demonstrate that large-vCPU VMs do not need
to incur additional virtualization overheads with the right set
of guest and host OS optimizations.

A. Experimental Setup

Our test environment consists of an Intel Xeon server
with 2.1GHz dual 6-core processors and 128 GB memory.
To avoid interference from second-order effects, we disable
hyper-threading and the second 6-core CPU in the BIOS
settings. Thus the host machine effectively uses only 6 physical
cores in all experiments. The VM is assigned 8 GB memory
with varying number of vCPUs from 1 to 255 (the maximum
vCPU count supported by KVM). Both the host and the VM
run Linux kernel version 4.12.9 and QEMU version 2.5.0.
Each data value is computed as an average over at least five
experimental runs and preceded by a warmup run to eliminate

the impact of cold caches and TLB. Where standard deviation
is high, we repeat the experiments to increase confidence in
our results.

Table I lists the six experimental configurations that we
compare in our evaluations. In all configurations except those
involving fast vCPU wakeup, the host OS runs an unmodified
Completely Fair Scheduler (CFS), which is the default CPU
scheduler in the Linux kernel. In the Baseline configuration,
the VM runs an unmodified CFS scheduler. In the pvTLB
configuration, the guest OS is modified to use our para-
virtualized TLB flush mechanism when all online vCPUs need
to flush their TLBs in response to changes in page-table
entries. In the Fast Wakeup configuration, the hypervisor is
modified to boost the priority of a vCPU that’s being woken up
from idle mode to run a guest task. In the Per-Thread vCPUs
configuration, the guest OS is modified to pin one application
thread to each vCPU, so that thread migration across vCPUs
and the resulting inter-vCPU IPIs are eliminated. The last
two configurations consist of combinations of the first four
and help study incremental performance impact of combining
different techniques.

B. PARSEC Benchmark Suite

Princeton Application Repository for Shared-Memory Com-
puters (PARSEC) [32] is a benchmark suite for multi-threaded
applications. We discuss three applications from this suite in
detail, namely, Dedup, Vips, and Canneal, for results presented
in this paper. Results from other applications in the suite
are discussed briefly due to space constraints. Dedup [32]
compresses a data stream with a combination of global and
local deduplication, and represents an I/O and CPU intensive
parallel application. The VASARI Image Processing Sys-
tem (VIPS) [32] is a CPU and memory-intensive parallel
application for image processing operations such as affine
transformations and convolution. Canneal [32] is another CPU
and memory-intensive parallel application that uses cache-
aware simulated annealing to minimize the routing cost of chip
design. Together, these applications allow us to stress test the
effectiveness of different optimizations. We ran 255 threads
for all the benchmarks, except for Blackscholes, which runs
128 threads because it requires thread count to be a power of
2.

C. Application Execution Time

Figures 2, 3, and 4 show the execution times for Canneal,
Vips, and Dedup, respectively, when each of our techniques
is used alone with CFS compared to the CFS-only Baseline
configuration. We first vary the number of vCPUs assigned
to a VM from 1 to 6, followed by 50, 100, 150, 200 and
255 vCPUs. The Baseline configuration performs best with
6 vCPUs, when the degree of parallelism is the highest
and contention is minimized. With more than 6 vCPUs, the
execution time of the Baseline configuration worsens for all
three benchmarks applications, but more for Vips and Dedup
than Canneal.

200 i

Configuration Default CFS scheduler | Para-virtual TLB Flush | Fast vCPU Wakeup | Per-thread vCPUs
Baseline X
pvILB X X
Fast Wakeup X X
Per-thread vCPUs X X
pvTLB + Fast Wakeup X X X
pvTLB + Fast Wakeup + Per-thread vCPUs X X X X
TABLE 1
VARIOUS COMBINATION OF CONFIGURATIONS USED IN EXPERIMENTS.
© Baseline © Baseline
300 pvTLB pvILB a
“ fast wakeup 80 # fast wakeup o "~...
20 @ per-thread vCPUs 70 e per-thread vCPUs ".,..

150

100

Execution Time(s)

50

0 50 100 150 200 250
Number of vCPUs

Fig. 2. Canneal: Effect of individual techniques on execution time.

250 © Baseline

& pvILB

200 # fast wakeup

© per-thread vCPUs

150 4

100

Execution Time(s)

50

Number of vCPUs

Fig. 3. Vips: Effect of individual techniques on execution time.

For Canneal, in Figure 2, the per-thread vCPUs configura-
tion provides a slight performance improvement over baseline
as the number of vCPUs exceeds 150. This improvement
is because pinning threads to vCPUs prevents the guest OS
from migrating threads among vCPUs for load balancing and
eliminates the corresponding rescheduling IPIs. The other two
techniques do not show any significant performance improve-
ment over Baseline, since the overhead of TLB flushes and
idle thread activation is small on Canneal runtime.

For Vips, in Figure 3, and Dedup, in Figure 4, fast wakeup
and pvTLB configurations provide a large improvement over
Baseline, since these applications have significant instances of
idle vCPUs and TLB Flush IPIs. However, per-thread vCPUs
optimization does not provide much performance gain over
Baseline and performs slightly worse by preventing thread
migration across vCPUs in the guest.

Execution Time(s)
5

100 150 200 250
Number of vCPUs

Fi

=

g. 4. Dedup: Effect of individual techniques on execution time.

@ Baseline
250 =pvTLB
@ pvTLB + fast wakeup

200 ©pvTLB + fast wakeup + per-thread vCPUs

150

100

Execution Time(s)

50

0 50 100 150 200 250
Number of vCPUs

Fig. 5. Canneal: Effect of combining different techniques on execution time.

Next, we examine the performance when combinations of
these techniques are used together. For Canneal, in Figure 5,
the combination of all three techniques improves performance
over Baseline by a larger margin than using per-thread vCPUs
or pvTLB alone in Figure 2. Likewise, for Vips in Figure 6
and Dedup in Figure 7, combination of all three techniques
performs better than Baseline by a large margin. More impor-
tantly, the combined use of all techniques matches the peak
performance of Baseline configuration when using 6 vCPUs,
and does not decrease as the number of vCPUs is increased
to 255. Thus, the performance of a large-vCPU VM is not
impacted by virtualization overheads.

Next, we examine in greater depth, the relationship of TLB
Flush and Reschedule IPIs on these benchmark execution
times.

@ Baseline

180 &pvILB

@ pvTLB + fast wakeup
160 ©pvTLB + fast wakeup + per-thread vCPUs
~ 140
T i
120
s (R R S G— P—
Z 100 ot SR
=
g 8
=1 »
§ 60
o 40
. . snlms & = B S
20 x - v v -
0
0 50 100 150 200 250
Number of vCPUs
Fig. 6. Vips: Effect of combining different techniques on execution time.
@ Baseline
90 pvILB
a0 @ pvTLB + fast wakeup '+.
©pvTLB + fast wakeup + per-thread vCPUs R
w70
T
g 60
= [TETETTTIRRROIINr SORRRPRRTLEE ¢ .
=50 © ‘0
=
S 40
=
S 30 g B
% LA Lt eIy e g==ooC g--T=eg
oo20 B & > 1
10
0
0 50 100 150 200 250
Number of vCPUs

Fig. 7. Dedup: Effect of combining different techniques on execution time.

D. Addressing TLB Flush IPI Overhead

We discussed earlier that delivery of TLB Flush IPIs across
vCPUs must be emulated by the hypervisor. More the TLB
Flush IPIs, more the hypervisor-level emulation overhead.
Here we study the impact of TLB Flush IPIs on application
execution times discussed in the previous section.

Figures 8, 9 and 10 compare the number of TLB Flush
IPIs in the Baseline and pvTLB configurations, as the number
of vCPUs is increased for Canneal, Vips, and Dedup appli-
cations respectively. Specifically, for Baseline configuration,
we observe that increasing the number of vCPUs in a VM
also increases the number of TLB Flush IPIs. In contrast,
the pvTLB configuration replaces IPI-driven TLB flush with a
para-virtualized TLB Flush IPI, hence we do not see any TLB
Flush IPIs in the guest.

Next, let’s correlate these TLB Flush IPI counts with the
execution times seen earlier. We see that, for Vips in Figure 3
and Dedup in Figure 4, both the Baseline execution times and
its reduction using pvTLB correlate closely with the respective
IPI counts in Figures 9 and 10. Vips and Dedup are both
memory-intensive applications which trigger large number of
TLB Flush IPIs, hence para-virtualizing TLB Flush operation
produces a major difference in application performance.

On the other hand, for Canneal, the execution time in
Figure 2 does not show a significant improvement from
the use of pvTLB optimization. We observe from Figure 8

@ Baseline
000 | & purrn
26000
o
&
= 5000
3
S 4000
g
S 3000 +
S I SR GRNT S
2000 | L@ e
& i — o +
o000 | e
o—g' - R N X B
0 50 100 150 200 250
Number of vCPUs
Fig. 8. Canneal: effect of number of vCPUs on TLB flush IPIs.
5M © Baseline
“pvILB
i)
& aMm
- b
™ e
6 R
S [.
F M
a1
=
=M
0—;’ - N ~ X B
0 50 100 150 200 250

Number of vCPUs

Fig. 9. Vips: effect of number of vCPUs on TLB flush IPIs.

that, relative to Vips and Dedup, Canneal triggers very few
TLB Flush IPIs. Hence its performance gains from pvTLB
optimization is also small.

E. Addressing Overhead in Reactivation of Idle vCPUs

Here we study the impact of overhead in reactivating
idle vCPUs on application execution times discussed in the
Section V-C. As discussed earlier in design, idle vCPUs
transition to hypervisor mode, where the hypervisor places
the corresponding host-level vCPU thread in a blocked state.
The vCPU thread remains blocked till it has a guest task
ready to execute and is woken up by a rescheduling IPI
delivered from a peer vCPU. The delivery of this inter-vCPU
rescheduling IPI is emulated in software by the hypervisor
and introduces delays in reactivating and idle-mode vCPU. We
expect that the number of rescheduling IPIs to increase with
the number of vCPUs because the likelihood of a vCPU being
idle also increased. To reduce this overhead, we modified the
rescheduling IPI delivery mechanism to temporarily boost the
scheduling priority of the receiver vCPU thread by designating
the IPI receiver as the immediate next task to be scheduled by
host-level CPU scheduler.

Figures 11, 12 and 13 show the increase in the number of
rescheduling IPIs with increase in the number of vCPUs. We
notice that thread pinning mechanism in per-thread vCPUs
triggers even more rescheduling IPIs for Canneal and Dedup.

© Baseline
500K |4 pyTIR
]
A, 400k
=]
c
Z 300k +
S .
5 S
g 200k RELT T Q“ -
«n]
o
[100k
0 -~ - - - a
0 50 100 150 200 250
Number of vCPUs

Fig. 10. Dedup: effect of number of vCPUs on TLB flush IPIs.

1.6M © Baseline
- -pvTLB + fast wakeup + per-thread vCPUs
& 1.4M A —a - 4
2im Py
=
E M (e o,
§ 0.8M ‘I
& o0.6M i
=]
°© 3
= 0.4M O...., *
gm0 e ¢ ®
£ 0.2M
E]
Z o—+
0 50 100 150 200 250

Number of vCPUs

Fig. 11. Canneal: effect of number of vCPUs on rescheduling IPIs.

With unmodified CFS kernel in the guest, if a guest task is
woken up, an idle but scheduled vCPU could steal the woken
task from another pre-empted vCPU, instead of sending a
rescheduling IPI. But with pinning mechanism, a rescheduling
IPI must be sent to the vVCPU where the task is pinned.

Ironically, while using pinning mechanism helps us to elim-
inate guest side scheduling it also causes more rescheduling
IPIs. However, since we accelerate the delivery of rescheduling
IPI and reactivation of idle vCPUs, the net impact of additional
IPIs is minimal on execution time.

Figures 2, 3 and 4 show that our Fast Wake-up is able to
reduce the overhead due to delays in reactivating idle vCPUs
for all three applications, even when there are a high number
of rescheduling IPIs. Especially for Canneal in Figure 5, it
can be seen that performance improves a bit with the ”pvTLB
+ fast wakeup” configuration and we know from Figure 11
that Canneal does not generate too many TLB Flush IPIs but
generates significant rescheduling IPIs.

To get a better understanding we also examined VM Exit
reasons in the hypervisor and found that the majority of the
VM Exits were due to the MSR Write operations, which
triggers IPI via x2APIC [31]. We verified the number of
rescheduling IPIs correlate with MSR Write related VM Exits.

200k @ Baseline
5 pvTLB + fast wakeup + per-thread vCPUs 0.,
B,

2 1501 ettt — o
< ' 1 (-}
2]
=1 []
g 100k |J
9]
m)
o
1)
=~ 50k
9]
o
E
=
Z 0—p

0 50 100 150 200 250

Number of vCPUs

Fig. 12. Vips: effect of number of vCPUs on rescheduling IPIs.

@ Baseline
5 600k pvTLB + fast wakeup + per-thread vCPUs
= 1 — ¢ -z
ED 500k =
2 &
s /e
S0k | /e
2z 2. o’
b *
& 300k °
~
B 200k °
= /
R |
100k

E i
4 0—4

0 50 100 150 200 250

Number of vCPUs

Fi

=

g. 13. Dedup: effect of number of vCPUs on rescheduling IPIs.

F. CPU Utilization

We not only looked at the execution time but also examined
CPU utilization overhead due to our techniques compared to
the Baseline configuration. Figures 14, 15 and 16 show the
CPU utilization for three benchmark applications. Figures 14
and 15 show that, in the case of Canneal and Vips while
CPU utilization is comparable to Baseline across all vCPU
counts, the execution time improves in Figures 5 and 6. In
case of Dedup we actually observe a slight reduction in CPU
utilization in Figure 16 while simultaneously improving the
performance in Figure 7.

G. Adaptation to Different pCPU Configurations

We also show that our VM can adapt to a different physical
CPU counts after a VM migration without changing the vCPU
configuration, such as having to rely on hotplug mechanisms
to reconfigure a VM. We conducted experiments in which we
varied the number of physical CPUs. For these experiments
we changed the number of pCPUs from 1 to 12. Table II lists
the four configurations we used.

Our reference for comparison, called Baseline-equal, is the
original Linux CPU scheduler in a VM that has the same
number of vCPUs as the pCPUs. The Baseline-255 configu-
ration is meant to examine how the Linux scheduler would
perform when it is configured with the maximum allowed

Configuration Explanation

Baseline-equal

Baseline with vCPUs = pCPUs

pvTLB + fast wakeup + per-thread vCPUs-equal

pvTLB + fast wakeup + per-thread vCPUs with vCPUs = pCPUs

Baseline-255

Baseline with vCPUs = 255

pvTLB + fast wakeup + per-thread vCPUs-255

pvTLB + fast wakeup + per-thread vCPUs with vCPUs = 255

TABLE I
CONFIGURATIONS FOR STUDYING THE EFFECT OF PCPUS VARIATION.

400

f\g © Baseline
DO 350 # pvTLB + fast wakeup + per-thread vCPUs
S
]

300 | e @i e -
J § TR Sttty gt LN, Wi .
E 230 (B et " s
® o
©
~ 200 i
2 :
S 150 r
N &
= 100
=]
o 50
o
O 0 |

0 50 100 150 200 250
Number of vCPUs

Fig. 14. Canneal: Host CPU Utilization for 6 pCPUs.

@ Baseline
500 #pvTLB + fast wakeup + per-thread vCPUs

}‘(........ —" S—_—

300

200

CPU Utilization % (max 600 %)

50 100 150 200 250
Number of vCPUs

Fig. 15. Vips: Host CPU Utilization for 6 pCPUs.

255 vCPUs. The ”pvTLB + fast wakeup + per-thread vCPUs-
equal” configuration allows us to examine the performance
when the number of vCPUs equals the number of pCPUs. The
”pvTLB + fast wakeup + per-thread vCPUs-255" configuration
allows us to examine how our techniques adapt to the changing
the number of pCPUs when the VM has 200 vCPUs.

Figure 17, Figures 18 and 19 show that our "pvILB +
fast wakeup + per-thread vCPUs-equal” configuration matches
the peak performance of Baseline-equal. More importantly,
”pvTLB + fast wakeup + per-thread vCPUs-255" outperforms
”Baseline-255" due to reduction of key processor virtualization
overheads, and approaches Baseline-equal performance for
larger pCPU counts.

These results show that, when the vCPU count exceeds
pCPU count, our techniques help reduce inter-processor syn-
chronization overheads. Also, after a VM migration to a
machine with additional physical CPU cores, our techniques
allow a VM to benefit from additional parallelism having to

= @ Baseline
g 300 pvTLB + fast wakeup + per-thread vCPUs
= P Y SO
8 20 | .- o [] D, PRSI é
X e
] . ‘ = - -
'S 1 - i - - I

E 200 !
O\Q {
5 150 i
= :
o =
S 10 6
=
g 50
|
S

0 50 100 150 200 250

Number of vCPUs

Fig. 16. Dedup: Host CPU Utilization for for 6 pCPUs.

“© Baseline-equal: with vCPUs = pCPUs
400 -pvTLB + fast wakeup + per-thread vCPUs-equal: with vCPUs = pCPUs
“® Baseline: with vCPUs = 255
©pvTLB + fast wakeup + per-thread vCPUs: with vCPUs = 255
300 <

Execution Time(s)
N
8

Number of pCPUs

Fig. 17. Canneal: Performance in VM with varying pCPUs.

reconfigure additional vCPUs.

H. Other Applications in PARSEC Suite

We also evaluated other applications from PARSEC bench-
mark suite for the effectiveness of our techniques. Figures 20,
21, 22 and 23 compare our techniques against Baseline for
Blackscholes, Bodytrack, Ferret, and Raytrace applications.
As can be seen, the Baseline CFS kernel scales well with
vCPU count for all four benchmarks (except for BodyTrack
when using 200 vCPUs in Figure 21). Our technique closely
matches or improves upon the Baseline performance for all
benchmarks.

VI. RELATED WORK

In this section, we contrast our work against prior ap-
proaches to address performance overheads in processor
scheduling for VMs. Prior approaches can be categorized
as addressing vCPU synchronization overheads and double
scheduling problems.

***Baseline-equal: with vCPUs = pCPUs

* pvTLB + fast wakeup + per-thread vCPUs-equal: with vCPUs = pCPUs
= Baseline: with vCPUs = 255
=pvTLB + fast wakeup + per-thread vCPUs: with vCPUs = 255

600
500
400 <

300)

200

Execution Time(s)

100

0 2 4 6 8 10 12
Number of pCPUs

Fig. 18. Vips: Performance in VM with varying pCPUs.

“© Baseline-equal: with vCPUs = pCPUs

"pvILB + fast wakeup + per-thread vCPUs-equal: with vCPUs = pCPUs
“® Baseline: with vCPUs = 255
©pvTLB + fast wakeup + per-thread vCPUs: with vCPUs = 255

4
150 '\

200

100 A

Execution Time(s)

\
> - o--0-
50 * -5

‘0—-0—-0.__‘0__0__0

Number of pCPUs

Fig. 19. Dedup: Performance in VM with varying pCPUs.

A. Eliminating Double Scheduling

The double scheduling problem refers to scheduling inef-
ficiencies that result from independent scheduling decisions
made by the CPU schedulers inside the guest OS and the host
OS. FlexCore [19], [20] advocates the position that the CPU
scheduling in the host OS must be simplified by partitioning
available pCPUs among all active VMs. Depending on guest
workload, the number of vCPUs seen by each VM is dynam-
ically adjusted to match the number of pCPUs assigned to a
VM, using hot plugging/unplugging mechanism. All vCPUs
of a VM are scheduled simultaneously, via Gang Scheduling,
which eliminates delays in IPI delivery and the lock-holder
pre-emption problem. However, the number of active VMs
hosted by the system cannot exceed the total number of
pCPU cores, which limits consolidation efficiency. Another
work, called vScale [21], eliminates the limitation in FlexCore
by allowing pCPUs to be shared by more than one vCPU.
However, both FlexCore and vScale rely on dynamically
adding or removing guest vCPUs using either hypervisor-
level hot plugging/unplugging [22] or guest-level online/offline
mechanisms. These mechanisms cannot be frequently invoked,
since they are heavyweight and disruptive to guest operations;
the guest OS needs to account for vCPUs that suddenly
appear and disappear by reconfiguring its internal structures
every time and migrating active processes between vCPUs. In
contrast, our approach eliminates the need to guess or keep

300 © Baseline
EpvILB
250 @ pvTLB + fast wakeup
@ ©pvTLB + fast wakeup + per-thread vCPUs
g 200
EO?
H
= 150
9
=1
8 ;
2 100
2 ‘g—t
m k - i i s
50 g g g g
0
0 50 100 150 200 250
Number of vCPUs
Fig. 20. Blackscholes: Effect of combining different techniques on execution
time.
250 © Baseline
FpvILB
200 @ pvTLB + fast wakeup B,
> 9 pvTLB + fast wakeup + per-thread vCPUs T
E/ ™
= 150
= 1
o
3 4 .
= 100 — R e
bl - — - ¢
I G e RN g -~
)
0
0 50 100 150 200 250
Number of vCPUs
Fig. 21. Bodytrack: Effect of combining different techniques on execution
time.

changing the number of vCPUs; we advocate the opposite
solution where each VM gets maximum possible vCPUs which
remains unchanged for the life of the VM; each application
thread in the VM gets its own dedicated vCPU, eliminating
the need for most CPU scheduling in the guest OS.

B. Reducing Inter-vCPU Synchronization Cost

Prior approaches have also focused on reducing the over-
head of emulating synchronization events between vCPUs,
such as TLB flush requests and spinlock synchronization
across vCPUs. IPI-driven co-scheduling [14] tries to sched-
ule together IPI sender and receiver vCPUs. Partial co-
scheduling [15] improves host utilization compared to strict
co-scheduling by detecting related vCPUs that communicate
with each other through shared pages. KVM [17] provides a
paravirtualized remote flush TLB mechanism so that sender
vCPU does not need to wait for acknowledgment from a pre-
empted or sleeping vCPU. Although it reduces the latency
of TLB flush operations, it does not eliminate the delivery
overhead of TLB flush IPI. Shoot4U [18] proposes a paravirtu-
alized TLB flush operation which, like our work, also emulates
TLB flush operation in the hypervisor, without injecting a
function call IPI into the guest. The flush handler in the

@ Baseline
600 pvILB
@ pvTLB + fast wakeup
500 @ pvTLB + fast wakeup + per-thread vCPUs
@ L
[
g 400
H
5 300
=] >
g 200
> [
oy
100 P assmamsaalagssssassasrase P CU U ldidenid b et~ 8
L g o g —y
0
0 50 100 150 200 250

Number of vCPUs

Fig. 22. Ferret: Effect of combining different techniques on execution time.

350 “© Baseline
pvILB
300 9 pvTLB + fast wakeup
o ©pvTLB + fast wakeup + per-thread vCPUs
~ 250
7] L 3
E
£ 200
g
= 150 §
=1
g : i
% 100 |8 & —— -~ & -0
o
50
0
0 50 100 150 200 250
Number of vCPUs
Fig. 23. Raytrace: Effect of combining different techniques on execution
time.

hypervisor iterates over all vCPUs of the guest, invalidating
relevant address mappings. While this approach works well
for small number of vCPUs, the overhead increases rapidly
for large-vCPU VMs. In our work, we directly invalidate TLB
entries on pCPUs, instead of vCPUs, thus bounding the TLB
flush cost in proportion to pCPUs count, even when the vCPU
count is high.

Uhlig et al. [11] proposed paravirtualized and fully virtual-
ized solutions to reduce the busy waiting time over spin locks.
Fribel et al. [34] proposed techniques to detect busy waits of
vCPU in the hypervisor. Para-virtualized ticket spinlock [12],
[13] uses a FIFO queue to prioritize vCPU scheduling order.
While these techniques are useful, we use a simpler existing
KVM support for Pause-Loop Exiting (PLE) [35] to have a
spinning VCPU exit to hypervisor earlier, so that the lock
holding vCPU gets a chance to complete its critical section.

Finally, unlike the above approaches, our work also speeds
up the reactivation of idle vCPUs to handle new threads in
response to rescheduling IPI from another vCPU.

VII. CONCLUSION

Parallel applications running in VMs suffer from degraded
performance when the number of virtual processors (vCPUs)
exceeds the number of physical processors (pCPUs). In this

paper, we tracked the root causes of this performance degrada-
tion as being due to the increased cost of emulating inter-vCPU
synchronization events, such as TLB flushes and rescheduling
IPIs. To efficiently run large-vCPU VMs with low hypervisor-
induced overheads, we presented three techniques to effec-
tively decouple parallel application performance from the
number of vCPUs. The first technique dedicates a vCPU to
run each guest thread to eliminate IPIs triggered by inter-
vCPU work stealing. The second technique para-virtualizes
the emulation of inter-vCPU TLB flushes. The third technique
speeds up the reactivation of idle vCPUs by prioritizing the
delivery of rescheduling IPIs. We evaluated a prototype of our
techniques in the Linux KVM/QEMU platform using several
parallel benchmarks and showed that their performance is
sustained even when the vCPU count far exceeds the pCPU
count. Our techniques enable support for large-vCPU VMs on
hosts with fewer pCPUs and also exploit increased parallelism
when VMs are migrated to hosts with more pCPUs.

ACKNOWLEDGMENT

This work is funded in part by the National Science Foun-
dation through award CNS-1527338.

REFERENCES

[11 A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “KVM: the
Linux virtual machine monitor,” in Proceedings of the Linux symposium,
2007, pp. 225-230.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” ACM
SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 164-177, 2003.

[3] M. F. Mergen, V. Uhlig, O. Krieger, and J. Xenidis, “Virtualization
for high-performance computing,” ACM SIGOPS Operating Systems
Review, vol. 40, no. 2, pp. 8-11, 2006.

[4] A.J. Younge, R. Henschel, J. T. Brown, G. Von Laszewski, J. Qiu, and
G. C. Fox, “Analysis of virtualization technologies for high performance
computing environments,” in /EEE International Conference on Cloud
Computing (CLOUD), 2011.

[5] N. Regola and J.-C. Ducom, “Recommendations for virtualization
technologies in high performance computing,” in Cloud Computing
Technology and Science (CloudCom), 2010, pp. 409-416.

[6] L. Youseff, R. Wolski, B. Gorda, and C. Krintz, ‘“Paravirtualization
for HPC systems,” in Frontiers of High Performance Computing and
Networking — ISPA 2006 Workshops. Springer Berlin Heidelberg, 2006,
pp. 474-486.

[71 R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. Martins, A. V.
Anderson, S. M. Bennett, A. Kagi, F. H. Leung, and L. Smith, “Intel
virtualization technology,” IEEE Computer, vol. 38, no. 5, pp. 48-56,
2005.

[8] D. Abramson, J. Jackson, S. Muthrasanallur, G. Neiger, G. Regnier,
R. Sankaran, I. Schoinas, R. Uhlig, B. Vembu, and J. Wiegert, “Intel
virtualization technology for directed 1/0.” Intel technology journal,
vol. 10, no. 3, 2006.

[91 AMD Corporation, “AMD Virtualization (AMD-V) technology

https://www.amd.com/en-us/solutions/servers/virtualization.”

L. Lamport, “On interprocess communication,” Distributed computing,

vol. 1, no. 2, pp. 86-101, 1986.

V. Uhlig, J. LeVasseur, E. Skoglund, and U. Dannowski, “Towards

scalable multiprocessor virtual machines.” in Virtual Machine Research

and Technology Symposium, 2004, pp. 43-56.

K. Raghavendra, “Paravirtualized ticket spinlocks

https://lwn.net/articles/495597/.”

S. Kashyap, C. Min, and T. Kim, “Opportunistic Spinlocks: Achieving

virtual machine scalability in the clouds,” ACM SIGOPS Operating

Systems Review, vol. 50, no. 1, pp. 9-16, 2016.

H. Kim, S. Kim, J. Jeong, J. Lee, and S. Maeng, “Demand-based

coordinated scheduling for SMP VMs,” ACM SIGPLAN Notices, vol. 48,

no. 4, pp. 369-380, 2013.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

A. Busse, J. H. Schonherr, M. Diener, P. O. Navaux, and H.-U. HeiB,
“Partial coscheduling of virtual machines based on memory access
patterns,” in Proceedings of the 30th Annual ACM Symposium on
Applied Computing, 2015.

O. Sukwong and H. S. Kim, “Is co-scheduling too expensive for
SMP VMs?” in Proceedings of the European Conference on Computer
Systems (Eurosys), 2011, pp. 257-272.

N. A. Dadhania, “Kvm paravirt remote flush TLB
https://lwn.net/articles/500188/.”

J. Ouyang, J. R. Lange, and H. Zheng, “Shoot4U: Using VMM Assists

to Optimize TLB Operations on Preempted vCPUs,” in Proceedings of

the 12th International Conference on Virtual Execution Environments
(VEE), 2016, pp. 17-23.

T. Miao and H. Chen, “FlexCore: Dynamic virtual machine scheduling
using VCPU ballooning,” Tsinghua Science and Technology, vol. 20,
no. 1, pp. 7-16, 2015.

X. Song, J. Shi, H. Chen, and B. Zang, “Schedule processes, not
VCPUSs,” in Proceedings of the 4th Asia-Pacific Workshop on Systems.
ACM, 2013.

L. Cheng, J. Rao, and F. Lau, “vScale: Automatic and efficient processor
scaling for smp virtual machines,” in Proceedings of the Eleventh
European Conference on Computer Systems (EuroSys), 2016.

Z. Mwaikambo, A. Raj, R. Russell, J. Schopp, and S. Vaddagiri, “Linux
kernel hotplug CPU support,” in Linux Symposium, 2004.

S. Panneerselvam and M. M. Swift, “Chameleon: Operating system
support for dynamic processors,” ACM SIGPLAN Notices, vol. 47, no. 4,
pp- 99-110, 2012.

[24]

[25]
[26]

[27]

(28]
[29]
[30]
(31]

(32]
[33]

S. Panneerselvam, M. M. Swift, and N. S. Kim, “Bolt: Faster reconfigu-
ration in operating systems.” in USENIX Annual Technical Conference,
2015, pp. S11-516.

R. Harper and K. Rister, “KVM limits arbitrary or architectural?” in
KVM Forum, 2008.

J. Nakajima, “Enabling optimized interrupt/APIC virtualization in
KVM,” in KVM Forum, 2012.

I. Ahmad, A. Gulati, and A. Mashtizadeh, “vIC: Interrupt coalescing
for virtual machine storage device I/0O,” in USENIX Annual Technical
Conference, 2011.

P. M. Chen and B. D. Noble, “When virtual is better than real,” in Hot
Topics in Operating Systems, 2001.

C. Lameter, “Effective synchronization on Linux/NUMA systems,” in
Gelato Conference, 2005.

Linux Kernel Documentation, “Cpusets:
https://www.kernel.org/doc/documentation/cgroup-v1/cpusets.txt.”

Intel Corporation, “Intel 64 architecture x2APIC specification
https://software.intel.com/en-us/download/intel-64-architecture-x2apic-
specification.”

P. B. Suite, “http://parsec.cs.princeton.edu.”

G. Neiger, A. Santoni, F. Leung, D. Rodgers, and R. Uhlig, “Intel
Virtualization Technology: Hardware Support for Efficient Processor
Virtualization.” Intel Technology Journal, vol. 10, no. 3, 2006.

T. Friebel and S. Biemueller, “How to deal with lock holder preemption,”
in Xen Summit North America, 2008.

Rik van Riel, “Directed yield for pause loop exiting.
https://lwn.net/articles/424960/.”

